Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alan R. Kennedy* and Peter L. Pauson

Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland

Correspondence e-mail:
a.r.kennedy@strath.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.052$
$w R$ factor $=0.141$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\left(\boldsymbol{\eta}^{6}-N, N\right.$-Diethylaniline $)\left(\boldsymbol{\eta}^{4}-1,2,3,4\right.$-tetramethylcyclobutadiene)cobalt(I) hexafluorophosphate

The title isocobaltocenium salt, $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}\right)\right] \mathrm{PF}_{6}$, is shown to exist as discrete monomers with near equivalent $\mathrm{C}-\mathrm{C}$ bonds in the cyclobutadiene ring.

Comment

Isocobaltocenes are the series of compounds in which, in place of two cyclopentadienyl residues, the cobalt is π-bonded to one cyclobutadiene and one benzene ring. Species with bulky cyclobutadiene ring substituents have been known since the work of Maitlis \& Efraty (1965) and have been widely crystallographically characterized. However, despite synthetic protocols being well known (Cook et al., 1987), the only known structures of tetramethylcyclobutadiene-based isocobaltocenes are two species with unusual substituted boratabenzenes (Herberich et al., 2002).

(I)

Reported here is the structure of (I), a tetramethylcyclobutadiene isocobaltocenium salt with a simple N, N-diethyl-

Figure 1

The molecular structure of the cation of (I), shown with 50% probability displacement ellipsoids. H atoms and disordered fragments have been omitted for clarity.

Received 6 January 2005
Accepted 10 January 2005 Online 15 January 2005
aniline group as its arene component (Fig. 1). The centroid of the cyclobutadiene group lies further from Co 1 than the centroid of the benzene ring (1.705 versus $1.592 \AA$) and this distance is also slightly longer than those found for the boratabenzene species (range 1.686-1.702 \AA; Herberich et al., 2002). However, it falls into the middle of the range found for nine general Co-tetramethylcyclobutadiene complexes found in a search of the Cambridge Structural Database (Version 5, with updates to December 2004; Allen, 2002). The cyclobutadiene ring $\mathrm{C}-\mathrm{C}$ distances show only slight signs of alternate single- and double-bond nature (Table 1), indicating a high degree of aromaticity. The Co atom is placed over the centre of the cyclobutadiene ring but is displaced away from the amine-substituted C 1 atom of the benzene ring. No strong intermolecular contacts were observed.

Experimental

The title compound was prepared according to the method of Cook et al. (1987).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}\right)\right] \mathrm{PF}_{6}$
$M_{r}=461.31$
Monoclinic, $P 2_{\mathrm{a}_{1}} / c$
$a=8.4201$ (2) \AA
$b=16.2404$ (3) £
$c=15.1960$ (4) \AA
$\beta=103.844(1)^{\circ}$
$V=2017.63(8) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans
21381 measured reflections
4587 independent reflections
3068 reflections with $I>2 \sigma(I)$
$D_{x}=1.519 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K K radiation
Cell parameters from 21381
reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Cut block, yellow
$0.12 \times 0.10 \times 0.10 \mathrm{~mm}$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-21 \rightarrow 21$
$l=-17 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.141$
$S=1.03$
4587 reflections
273 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 14$	$1.973(3)$	$\mathrm{Co} 1-\mathrm{C} 2$	$2.109(3)$
$\mathrm{C} 1-\mathrm{C} 11$	$1.987(3)$	$\mathrm{C} 1-\mathrm{C} 6$	$2.126(3)$
$\mathrm{C} 1-\mathrm{C} 13$	$1.992(3)$	$\mathrm{C} 1-\mathrm{C} 1$	$2.241(3)$
$\mathrm{C} 1-\mathrm{C} 12$	$2.004(3)$	$\mathrm{C} 11-\mathrm{C} 14$	$1.447(5)$
$\mathrm{C} 14-\mathrm{C} 3$	$2.077(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.450(4)$
$\mathrm{C} 1-\mathrm{C} 5$	$2.088(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.442(4)$
$\mathrm{Co} 1-\mathrm{C} 4$	$2.101(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.452(5)$
$\mathrm{C} 14-\mathrm{C} 11-\mathrm{C} 12$	$90.0(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$90.1(3)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$90.1(3)$	$\mathrm{C} 11-\mathrm{C} 14-\mathrm{C} 13$	$89.8(3)$

H atoms were included in the riding-model approximation with $\mathrm{C}-\mathrm{H}$ distances: $\mathrm{CH}_{3} 0.98, \mathrm{CH}_{2} 0.99$ and $\mathrm{CH} 0.95 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. The $\mathrm{PF}_{6}{ }^{-}$anion is rotationally disordered about the F3-P1-F4 axis. After several trial calculations, the remaining four F atoms were refined over 12 sites with set occupancies. The largest remaining electron-density peaks all occur near to the $\mathrm{PF}_{6}{ }^{-}$anion. The C 10 methyl group was refined as disordered over two sites with occupancies refined [0.52 (2):0.48 (2)]. The occupancies of atoms F1, F2, F5 and F6 were set at 0.5 and the occupancies of atoms F7-F12 were set at 0.25 .

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1988); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Thanks are due to the EPSRC X-ray Crystallography Service at the University of Southampton for data collection.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Cook, M. R., Härter, P., Pauson, P. L. \& S̆raga, J. (1987). J. Chem. Soc. Dalton Trans. pp. 2757-2760.
Herberich, G. E., Basu Baul, T. S. \& Englert, U. (2002). Eur. J. Inorg. Chem. pp. 43-48.
Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Maitlis, P. M. \& Efraty, A. (1965). J. Organomet. Chem. 4, 175-176.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

